
Log-marginal likelihood estimator for the log-exponential power model
Source:R/LogExponentialPower.R
LML_LEP.RdLog-marginal likelihood estimator for the log-exponential power model
Arguments
- thin
Thinning period.
- Time
Vector containing the survival times.
- Cens
Censoring indication (1: observed, 0: right-censored).
- X
Design matrix with dimensions \(n\) x \(k\) where \(n\) is the number of observations and \(k\) is the number of covariates (including the intercept).
- chain
MCMC chains generated by a BASSLINE MCMC function
- prior
Indicator of prior (1: Jeffreys, 2: Type I Ind. Jeffreys, 3: Ind. Jeffreys).
- set
Indicator for the use of set observations (1: set observations, 0: point observations). The former is strongly recommended over the latter as point observations cause problems in the context of Bayesian inference (due to continuous sampling models assigning zero probability to a point).
- eps_l
Lower imprecision \((\epsilon_l)\) for set observations (default value: 0.5).
- eps_r
Upper imprecision \((\epsilon_r)\) for set observations (default value: 0.5)
Examples
library(BASSLINE)
# Please note: N=100 is not enough to reach convergence.
# This is only an illustration. Run longer chains for more accurate
# estimations (especially for the log-exponential power model).
LEP <- MCMC_LEP(N = 100, thin = 2, burn = 20, Time = cancer[, 1],
Cens = cancer[, 2], X = cancer[, 3:11])
#> Sampling initial betas from a Normal(0, 1) distribution
#> Initial beta 1 : -1.19
#> Initial beta 2 : -0.24
#> Initial beta 3 : 0.15
#> Initial beta 4 : 0.95
#> Initial beta 5 : -1.37
#> Initial beta 6 : 0
#> Initial beta 7 : 0.62
#> Initial beta 8 : -1.02
#> Initial beta 9 : 1.39
#>
#> Sampling initial sigma^2 from a Gamma(2, 2) distribution
#> Initial sigma^2 : 0.33
#>
#> Sampling initial alpha from a Uniform(1, 2) distribution
#> Initial alpha : 1.75
#>
#> AR beta 1 : 0.61
#> AR beta 2 : 0.55
#> AR beta 3 : 0.58
#> AR beta 4 : 0.65
#> AR beta 5 : 0.72
#> AR beta 6 : 0.02
#> AR beta 7 : 0.06
#> AR beta 8 : 0.02
#> AR beta 9 : 0.62
#> AR sigma2 : 0.68
#> AR alpha : 0.04
LEP.LML <- LML_LEP(thin = 2, Time = cancer[, 1], Cens = cancer[, 2],
X = cancer[, 3:11], chain = LEP)
#> AR beta 1 : 0.55
#> AR beta 2 : 0.65
#> AR beta 3 : 0.68
#> AR beta 4 : 0.71
#> AR beta 5 : 0.79
#> AR beta 6 : 0.06
#> AR beta 7 : 0.06
#> AR beta 8 : 0.05
#> AR beta 9 : 0.7
#> AR sigma2 : 0.93
#> AR alpha : 0.13
#> Likelihood ordinate ready!
#> Prior ordinate ready!
#> AR beta 1 : 0.5
#> AR beta 2 : 0.61
#> AR beta 3 : 0.7
#> AR beta 4 : 0.62
#> AR beta 5 : 0.8
#> AR beta 6 : 0
#> AR beta 7 : 0.02
#> AR beta 8 : 0
#> AR beta 9 : 0.71
#> AR sigma2 : 0.96
#> AR alpha : 0
#> Reduced chain.sigma2 ready!
#> Posterior ordinate alpha ready!
#> AR beta 1 : 0.57
#> AR beta 2 : 0.61
#> AR beta 3 : 0.73
#> AR beta 4 : 0.74
#> AR beta 5 : 0.77
#> AR beta 6 : 0.01
#> AR beta 7 : 0.04
#> AR beta 8 : 0.01
#> AR beta 9 : 0.67
#> AR sigma2 : 0
#> AR alpha : 0
#> Reduced chain.beta ready
#> !Posterior ordinate sigma2 ready!
#> [1] 0
#> AR beta 1 : 0
#> AR beta 2 : 0.63
#> AR beta 3 : 0.7
#> AR beta 4 : 0.62
#> AR beta 5 : 0.71
#> AR beta 6 : 0.01
#> AR beta 7 : 0.11
#> AR beta 8 : 0.01
#> AR beta 9 : 0.55
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 1
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0.68
#> AR beta 4 : 0.54
#> AR beta 5 : 0.68
#> AR beta 6 : 0
#> AR beta 7 : 0.05
#> AR beta 8 : 0.02
#> AR beta 9 : 0.55
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 2
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0.6
#> AR beta 5 : 0.67
#> AR beta 6 : 0.01
#> AR beta 7 : 0.04
#> AR beta 8 : 0.01
#> AR beta 9 : 0.62
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 3
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0.73
#> AR beta 6 : 0.01
#> AR beta 7 : 0
#> AR beta 8 : 0
#> AR beta 9 : 0.7
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 4
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0
#> AR beta 6 : 0
#> AR beta 7 : 0.05
#> AR beta 8 : 0
#> AR beta 9 : 0.65
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 5
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0
#> AR beta 6 : 0
#> AR beta 7 : 0.13
#> AR beta 8 : 0.01
#> AR beta 9 : 0.65
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 6
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0
#> AR beta 6 : 0
#> AR beta 7 : 0
#> AR beta 8 : 0.06
#> AR beta 9 : 0.7
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 7
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0
#> AR beta 6 : 0
#> AR beta 7 : 0
#> AR beta 8 : 0
#> AR beta 9 : 0.71
#> AR sigma2 : 0
#> AR alpha : 0
#> [1] 8
#> AR beta 1 : 0
#> AR beta 2 : 0
#> AR beta 3 : 0
#> AR beta 4 : 0
#> AR beta 5 : 0
#> AR beta 6 : 0
#> AR beta 7 : 0
#> AR beta 8 : 0
#> AR beta 9 : 0
#> AR sigma2 : 0
#> AR alpha : 0
#> Posterior ordinate beta ready!